(3x^2-4xy^2)dx+(x^3-4x^2+12y^3)dy=0

Simple and best practice solution for (3x^2-4xy^2)dx+(x^3-4x^2+12y^3)dy=0 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (3x^2-4xy^2)dx+(x^3-4x^2+12y^3)dy=0 equation:


Simplifying
(3x2 + -4xy2) * dx + (x3 + -4x2 + 12y3) * dy = 0

Reorder the terms:
(-4xy2 + 3x2) * dx + (x3 + -4x2 + 12y3) * dy = 0

Reorder the terms for easier multiplication:
dx(-4xy2 + 3x2) + (x3 + -4x2 + 12y3) * dy = 0
(-4xy2 * dx + 3x2 * dx) + (x3 + -4x2 + 12y3) * dy = 0
(-4dx2y2 + 3dx3) + (x3 + -4x2 + 12y3) * dy = 0

Reorder the terms:
-4dx2y2 + 3dx3 + (-4x2 + x3 + 12y3) * dy = 0

Reorder the terms for easier multiplication:
-4dx2y2 + 3dx3 + dy(-4x2 + x3 + 12y3) = 0
-4dx2y2 + 3dx3 + (-4x2 * dy + x3 * dy + 12y3 * dy) = 0
-4dx2y2 + 3dx3 + (-4dx2y + dx3y + 12dy4) = 0

Reorder the terms:
-4dx2y + -4dx2y2 + 3dx3 + dx3y + 12dy4 = 0

Solving
-4dx2y + -4dx2y2 + 3dx3 + dx3y + 12dy4 = 0

Solving for variable 'd'.

Move all terms containing d to the left, all other terms to the right.

Factor out the Greatest Common Factor (GCF), 'd'.
d(-4x2y + -4x2y2 + 3x3 + x3y + 12y4) = 0

Subproblem 1

Set the factor 'd' equal to zero and attempt to solve: Simplifying d = 0 Solving d = 0 Move all terms containing d to the left, all other terms to the right. Simplifying d = 0

Subproblem 2

Set the factor '(-4x2y + -4x2y2 + 3x3 + x3y + 12y4)' equal to zero and attempt to solve: Simplifying -4x2y + -4x2y2 + 3x3 + x3y + 12y4 = 0 Solving -4x2y + -4x2y2 + 3x3 + x3y + 12y4 = 0 Move all terms containing d to the left, all other terms to the right. Add '4x2y' to each side of the equation. -4x2y + -4x2y2 + 3x3 + x3y + 4x2y + 12y4 = 0 + 4x2y Reorder the terms: -4x2y + 4x2y + -4x2y2 + 3x3 + x3y + 12y4 = 0 + 4x2y Combine like terms: -4x2y + 4x2y = 0 0 + -4x2y2 + 3x3 + x3y + 12y4 = 0 + 4x2y -4x2y2 + 3x3 + x3y + 12y4 = 0 + 4x2y Remove the zero: -4x2y2 + 3x3 + x3y + 12y4 = 4x2y Add '4x2y2' to each side of the equation. -4x2y2 + 3x3 + x3y + 4x2y2 + 12y4 = 4x2y + 4x2y2 Reorder the terms: -4x2y2 + 4x2y2 + 3x3 + x3y + 12y4 = 4x2y + 4x2y2 Combine like terms: -4x2y2 + 4x2y2 = 0 0 + 3x3 + x3y + 12y4 = 4x2y + 4x2y2 3x3 + x3y + 12y4 = 4x2y + 4x2y2 Add '-3x3' to each side of the equation. 3x3 + x3y + -3x3 + 12y4 = 4x2y + 4x2y2 + -3x3 Reorder the terms: 3x3 + -3x3 + x3y + 12y4 = 4x2y + 4x2y2 + -3x3 Combine like terms: 3x3 + -3x3 = 0 0 + x3y + 12y4 = 4x2y + 4x2y2 + -3x3 x3y + 12y4 = 4x2y + 4x2y2 + -3x3 Add '-1x3y' to each side of the equation. x3y + -1x3y + 12y4 = 4x2y + 4x2y2 + -3x3 + -1x3y Combine like terms: x3y + -1x3y = 0 0 + 12y4 = 4x2y + 4x2y2 + -3x3 + -1x3y 12y4 = 4x2y + 4x2y2 + -3x3 + -1x3y Add '-12y4' to each side of the equation. 12y4 + -12y4 = 4x2y + 4x2y2 + -3x3 + -1x3y + -12y4 Combine like terms: 12y4 + -12y4 = 0 0 = 4x2y + 4x2y2 + -3x3 + -1x3y + -12y4 Simplifying 0 = 4x2y + 4x2y2 + -3x3 + -1x3y + -12y4 The solution to this equation could not be determined. This subproblem is being ignored because a solution could not be determined.

Solution

d = {0}

See similar equations:

| 5x+5y=-21 | | 25x+10y+5z=55 | | 27h^3=216 | | 8x+6-20x= | | 16x+7=17x-1 | | 6(2+4)=4(3x+6) | | -7(x+1)-16=30+3 | | 2=52 | | 8-3j=I(5+j) | | 10-2(4x+12)=-x+4 | | 3=87 | | 4x(x+5)(x-12)=0 | | 16x+7+17x-1=180 | | 2rs-6r+4rs+12r-4s= | | (4+6)4=(3+2x^2)3 | | 10x+5=12x-13 | | 5a^3-8a^2+2a^3= | | 11(7)+8+14(7)=90 | | 9x(x+4y+5z)= | | 11(7)+8+14(7)=180 | | 3(6-2x)=-8 | | -6(2b+1)+(13b-1)=0 | | 2ax+3x=8 | | 1ax+3x=4 | | 7g^3=56 | | 2ax-3x=8 | | 4c^3=32 | | 12x+6+11x+13=180 | | 2xy^2-26xy=0 | | 3(b-4)=5-2 | | 879=629+25x | | -4d=8 |

Equations solver categories